

"Energie-Management in Gießereien" FOUNDRYBENCH Ergebnisse des EU-Projektes

Dr. Joachim Helber

IfG- Institut für Gießereitechnik gGmbH, Düsseldorf

J. Helber, 22.09.2011

FOUNDRYBENCH

supported by Intelligent Energy Europe

Die alleinige Verantwortung für den Inhalt des vorliegenden Textes liegt bei den Autoren. Dieser Text entspricht nicht unbedingt der Meinung der Europäischen Gemeinschaften. Die Europäische Kommission übernimmt keine Verantwortung für jegliche Verwendung der darin enthaltenen Informationen.

www.foundrybench.fi

Analyse = Energie-Monitoring

Die Ergebnisse des EU-Projektes FOUNDRYBENCH helfen bei der Umsetzung eines Energiemanagementsystems.

Grob und ohne formalen Anspruch lassen sich die Arbeitsschritte gliedern in

- Energieeinsatzanalyse
- Energieverbrauchsanalyse
- Verbrauchsminderungspotential def.
- Entwicklungsplanung

"Energieeffizienzanalyse" EEA

Projektergebnis Analysenleitfaden

Es gibt keine vorgeschriebenen Formate für eine EEA. Es gibt jedoch praktisch verwandte und eingeführte Formate, von denen die nachfolgend vorgestellte Methode sicher eine gut dokumentierte und sehr breit angelegte darstellt.

Analysenleitfaden (D8)

Stärken: dezidierte Anleitung zur Durchführung einer Energieverbrauchsanalyse und zur Bewertung von Energieverbräuchen, vorrangig auf den Gebieten der Heiz- und Klimatechnik, der Restwärmenutzung (Wärmetausch) und des Schmelzens

Praktische Energieeffizienzanalyse

Bei Energieanalysen sollte unterschieden werden zwischen einfach erkennbaren Einsparpotentialen (Lampen, Brenner, Isolierungen etc.) und versteckten Potentialen. Hier geht es vorrangig um versteckte Potentiale vorwiegend in komplexen Prozess-Zusammenhängen. Darum kommen auch das eine oder andere Mal systemanalytische Instrumente zur Sprache.

Beispiele:

- Kreislaufführung zwecks Vergleichmäßigung der Legierungszusammensetzung
- Kühlleistung an heißen Abgasen
- Stand-by Situationen einer Formanlage und deren Energieverbrauche
- Abwärmeverluste aufgrund von Lüftungsvorgaben.

Analysearten und -hilfen

- Benchmark als Einstiegs- und Bewertungsinstrument für Energieeffizienzvergleiche
- interne <u>Zeitreihenanalyse</u> als Controllinginstrument und Technologievergleiche
- <u>Totalanalysen</u> vorzugsweise mit Priorisierung der analytischen Schritte nach Bedeutung der Verbraucher bzw. Energieströme

Leitfaden Energieeffizienzanalyse

- Schritt 1: Daten-, Prozessstruktur- und Gebäudeaufnahme
- Schritt 2: Grobanalyse; Messplan (Definition von Verfeinerungsobjekten)
- Schritt 3: Ergänzende Messungen; Prozessmodellerstellung (Simul.)
- Schritt 4: Auffinden und Definition von Optimierungspotentialen
- Schritt 5: Vorstellung der Ergebnisse, Realisierbarkeit und Priorisierung

Energie-Analyse – erste Datenerhebung

- Produktionskenndaten
- Stromverbrauch als Gesamtsumme und in Zeitreihen
- Druckluftverbrauch als Gesamtsumme und in Zeitreihen
- Gasverbrauch als Gesamtsumme und in Zeitreihen
- Heizölverbrauch als Gesamtsumme und Zeitreihen
- Dieselverbrauch als Gesamtsumme (Kraft-Wärme-Kopplung).
- Betriebseinheiten mit Untergruppen und Gebäuden
- Rohrpläne Gas (zur Identifizierung von Messstellen und Nutzergruppen)
- Rohrpläne Wasser (nur zur Identifizierung von Kühlströmen)
- Rohrpläne Zuluft / Abluft
- Rohrpläne Druckluft
- Quellenplan "Übersicht Emissionsquellen"
- BImSchG Genehmigungsantrag Formular 2.1 "Betriebseinheiten" oder andere Anlagenbeschreibungen
- Auszug aus Lastmanagement der Induktionsöfen
- Auszüge aus dem QMH mit energierelevantem Inhalt
- Kühlerleistungen/Kühlkreisläufe (Ofen, Lackierung, Ölkühler, Kompressoren, Wasserabscheider,

Energie-Analyse – Datenerhebung

- Kernsandkühlung, Sandkühler, Kastenkühlung, Gussteilkühlung, Lackierung)
- Beleuchtung nach Leuchtkörper differenziert (installierte Leistung)
- Gebäudedämmwerte (indirekt über Wandaufbau)
- Klimageräteliste
- Liste Gasfeuerungsanlagen
- Zeichnungen der technischen Lüftungen und Abgasführungen
- Zu- und Abluftbilanzen der Hallen
- Messprotokolle des Schornsteinfegers für feuerungstechnische Anlagen
- Luftwechselzahlen in den Gebäuden
- <u>Diffuse</u> Abluftströme und deren Enthalpien
- · Gebäudeflächen, Gebäudevolumina
- Wärmepass der (Verwaltungs-)gebäude
- Emissionsmessberichte nach §§ 26/28 BlmSchG
- Abgasenthalpien der gefassten Ströme durch Berechnung aus Emissionsmessungen
- •Vorhandene Studien zur Verbesserung der Energieeffizienz (Abwärmenutzung ...

Energieverbrauch beispielhaft

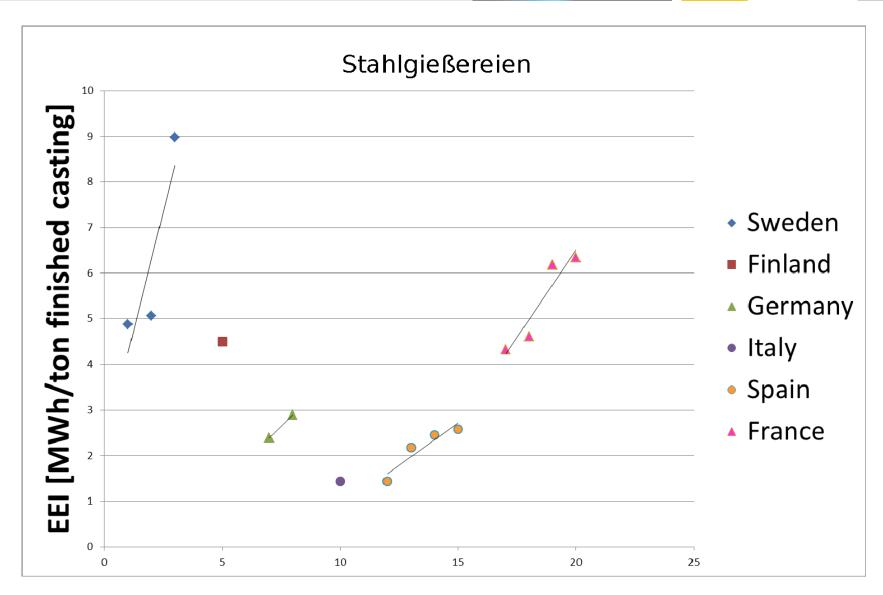
Abteilung	Stromverbrauch	Gasverbrauch
Schmelzen	20.000 MWh/a	1.900 MWh/a
Putzerei	900 MWh/a	0
Pfannenfeuer	0	600 MWh/a
Maschinenguss	1.200 MWh/a	0
Abluftanlagen	2.400 MWh/a	0
Druckluftstation	2.400 MWh/a	0
Kernmacherei	600 MWh/a	120 MWh/a
Raumheizung	0	3.000 MWh/a
Glühöfen	0	1.200 MWh/a

Herausforderung Betriebsstunden

Verbraucher	Nennleistung	Datenerfassung	Betriebsstunden	Jahresverbrauch	
Trockenofen	600 kW therm.	Keine wahrer Verbr.?	6 h/d / 5 d/wo / 48 wo/a	< 865 MWh/a	
Hallenheizung	200 kW therm.	Keine	?	?	
Beleuchtung	100 kW el.	keine	?	?	
Antriebe Formanlage	?	keine	?	?	
Heizung Vergießofen	300 kW el.	Stromzähler wahrer Verbr. 200 kW	24 h/d / 7 d/wo / 50 wo/a	1.680 MWh/a	

Gießereianalysen seitens der Projektpartner (7 Institute):

FOUNDRYBENCH



		Ī				Jährl.	Ausbrin	E-Ver-	Ī	E-Verb	rauch /
TYP	Code	* Gusseisen	usseisen - Guter Guss - Legierungstyp			Prod.	gung	brauch	Heizen	t GG	
		GJL	GJS	GJV	Ander	t/a	%	MWh/a	%	MWh/t	Ø
D											
Eisen	GE7304	60000	10000	30000		100000	61	189.044	2	1,9	
Eisen	GE6763	5800	2900			8700	56	23.094	5	2,7	
Eisen	GE1006		101402			101402	99	135.921	0	1,3	
Eisen	GE2406	21479	19651	0	0	41130	60	73.985	0	1,8	
Eisen	GE1824	61134	1121			62255	77	149.940	28	2,4	
Eisen	GE2803	30000				30000	#DIV/0!	24.883	5		
Eisen	GE3937	45057				45057	100	47.916	0	1,1	
Eisen	GE6419	15432	3474		1415	20321	67	49.287	0	2,4	
Eisen	GE3879	7253	2407			9660	74	118.079	2		
Eisen	GE7816	7414	27439			34853	63	59.068	1	1,7	
Eisen	D2962	14717	3225			17942	72	42.704	11	2,4	
Eisen	GE8305	79333	18044	19221		116598	77	325.506	16	2,8	
Eisen	GE8922	49441	1983	47	0	51471	83	5.245.107	0		
Eisen	GE0909	796	207000	0	0	207796	53	494.612	14	2,4	2,1
Stahl	GE7803		0	0	5300	5300	60	12.667	0	2,4	
Stahl	GE1978		8735			8735	50	25.497	0	2,9	2,6
Alu	DE 1858	4600		110		4710	48	33.437	2	7,3	
Alu	GE1809				8792	8792	56	21.726	0	2,4	4,9
	•	T	Ί	Т	•						
		AlSi		Mg							
		niedrig	leg. Stahl								

Einsparpotentiale Musterbetriebe

Foundry	Savings	Savings	Savings
Туре	Thermal MWh/t	Electricity MWh/t	Total MWh/t
Iron	0.45	0.10	0.55
Steel	1.07	0.28	1.35
Nonferrous	0.73	0.08	0.81

Wesentliche Potentiale liegen in Kühlwärmerückgewinnung aus Induktionsöfen (~ 100 KWh/t Fefl) Kühlwärmerückgewinnung aus Sandkühlung (~ 100 KWh/t Fefl) Wärmerückgewinnung aus Abwärme > 35 °C (Invest ab 3000 € / m³ • s) Energieeffiziente Druckluftgewinnung

Das Problem ist in der Regel: Wohin mit der Wärme?

Einsparpotentiale europaweit

Process	Iron foundry ener	Steel foundry		Nonferrous for	Saving		
	share, %	energy share, %	6	ry energy share, %,		potential,	
	and the range, ±%)	and the range, ±%		the range , ±%		%
Melting	42	ÇŦ	30	±5	55	±10	3 - 5
Annealing	1		30	±2			2
Drives	15	±2	10	±2	12	±5	1
CA-	8	±3	6	±2	5	±3	2
system							
Ladle pre-	4	±2	4	±4	3	±3	2
heat							
Ventila-	23 =	±10	16	±4	19	±8	5 - 10
tion							
Heating	3	±2	3	±1	3	±2	1
Lighting	4	±1	3	±1	3	±1	1
Total		100		100		100	17-24

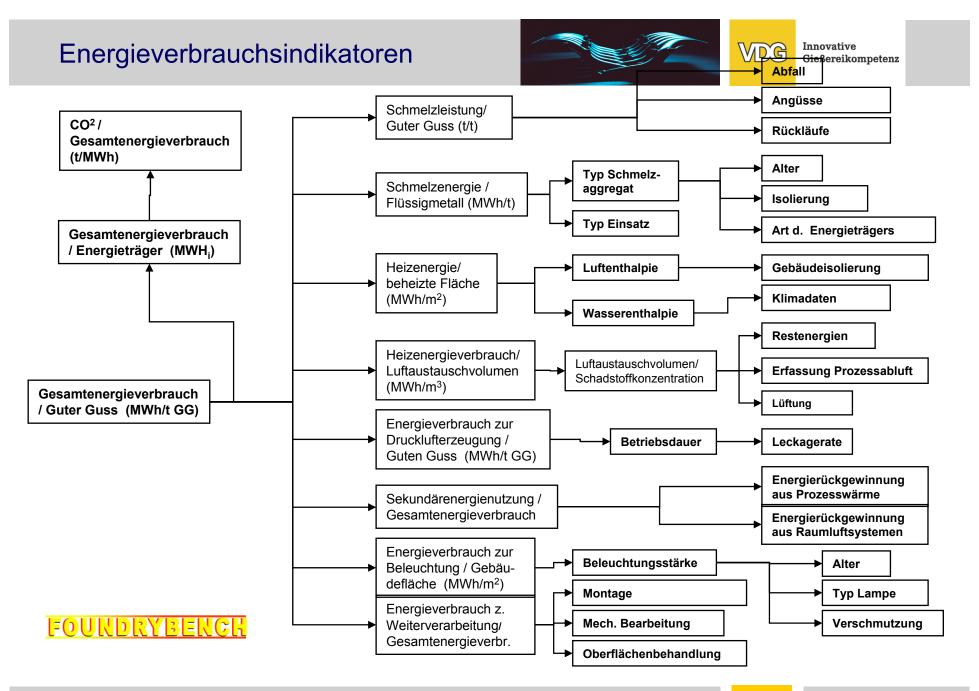
Auffinden von Einsparpotentialen

... ist eher eine Expertenaufgabe:

- Prozessoptimierung (Wartezeitverkürzung, Materialfluss ...)
- Aggregateoptimierung
- Verbrennungsoptimierung
- Wärmerückgewinnung / Doppelnutzung (auch Luftrückführung)
- Isolierung

Substitution durch erneuerbare Energien hat eigentlich nichts mit Energieeinsparung zu tun – ist hier darum nicht angesprochen

Projektergebnis Effizienzindikatoren



Energieeffizienzindikatoren D 9:

Indikatoren sind mit großer Vorsicht anzuwenden, denn sie können nur Aussagen liefern für *vergleichbare* Produktionen. Solche finden in Gießereien selten statt. Auf Shop-Ebene oder Maschinenebene sind jedoch in der Regel Möglichkeiten gegeben (E-Schmelzen, Kernmacherei, Druckluftstation....)

Finden Vergleiche statt, ist die *Abgrenzung der Anlagen und* die Spiegelung der *Daten* an dieser Abgrenzung mit großer Sorgfalt zu überprüfen. Üblicherweise spielen die Netzstrukturen bei einem solchen Vergleich nicht mit.

Projektergebnis Datenerhebung

Große Fragebogenaktion (D 16):

Diese sollte als Basis für ein Benchmark dienen. In Deutschland haben sich durchschnittliche 16 % der angeschriebenen G. beteiligt. Die Gesamtbeteiligung europaweit lag bei 16 % der 831 angesprochenen Betriebe (Erfassungsgrad bei knapp 18 % bezogen auf Europa inkl. NON-EU).

Es zeigte sich (Anfang 2011), dass nur etwa 4 % der Gießereien einen Verbrauchsüberblick haben, der es ihnen gestattet, einen detaillierten Fragebogen zu beantworten (welcher z. B. nach Verbrauchszahlen von Funktionsbereichen fragt). D. h., dass die Mehrzahl der Antworten das Auswerteprogramm nicht unterstützten.

Die Ergebnisse soweit:

Projektergebnis Datenerhebung

Wichtigste Hindernisse:

- Fehlende spezielle Budgets in Verbindung mit geringerer Priorität gegenüber Produktionserfordernissen
- > Fehlende spezifische Verantwortlichkeiten
- > Fallweise längere Amortisationszeiten als 3 Jahre

Wichtigste Treiber:

- Steigende Energiekosten
- Produktionskostenverringerung

Wichtigste Aussagen:

- ➤ Von den Betriebsleuten werden 15 % als einsparfähig angesehen
- ➤ Ebenso werden 7 % durch externe Berater als aktivierbar angesehen.

Projektergebnis BVT

BVT bedeutet "beste verfügbare Technik" und wird im Englischen mit BAT gekennzeichnet:

Auszug aus den "Best-Practice-Examples" (offene Fallsammlung im Internet):

- Intelligente Kompressorsteuerung
- Wärmespeicherung
- Pfannenvorwärmung
- Angusssimulation
- Ofenchargierung (IO)
- Leckagebegrenzung
- (Rotations)wärmetauscher

Es werden sog. *horizontale und vertikale* Techniken gießereispezifisch angesprochen.

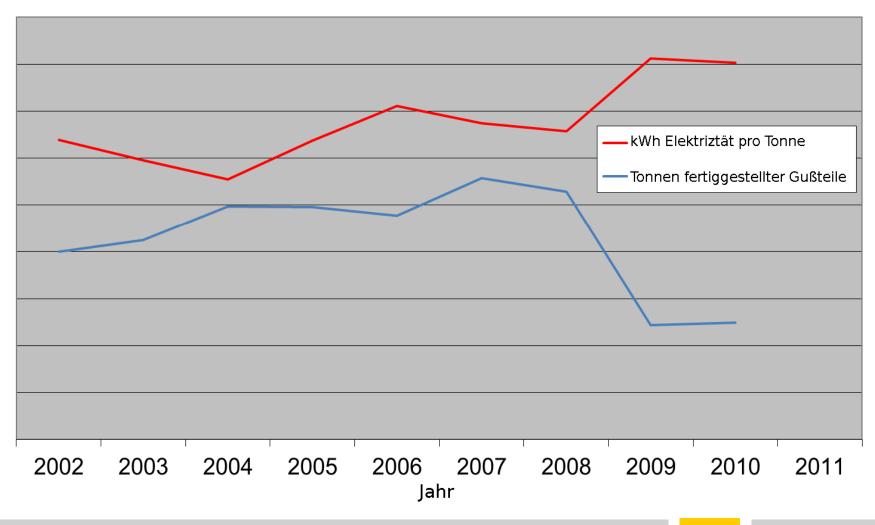
Ein textlich erläuternder Branchenleitfaden vermittelt einen Gesamtüberblick.

Gegenwärtiger Stand der Gießereien

- Geothermie und Distriktheizung in nördl. Ländern
- Klassische Abwärmenutzung (Luftrückführung / Klimatechn. Wärmetauscher)
- Porenbrenner
- Pfannenisoliersysteme (mehr in NL)

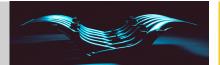
Deutsche Gießereien sind in der Entwicklung vorn, aber es gibt auch in den fortschrittlichen Betrieben noch eine Menge an Potential.

Der künstliche Kostendruck durch Treibhausgas-Zertifikatehandel und Energiesteuer trägt dazu bei, das sich Kapital-Amortisationszeiten neu rechnen und außerdem wird aus Nachhaltigkeitserwägungen eine Abkopplung von den nicht vorhersehbaren Poreisentwicklungen nahegelegt.


- Es sind noch viele Potentiale ungehoben, so dass wie bei der Einführung anderer Management-Systemen auch ein erheblicher Organisations- und Leistungsschub bei der Einführung eines EnMS zu erwarten ist.
- Die Systematik ist wichtig, wenn man auf einen Gesamtüberblick zusteuert (und diesen sollte man bei der Führung einer Unternehmens möglichst immer haben).
- Es gibt hunderte von unterstützenden Software-Paketen auf dem Markt, mit unterschiedlicher und häufig nicht erwartungsgemäßer Performance.
- Simulationstools sind noch unterentwickelt, sehr aufwändig und daher momentan höchstens als Planungs- oder Beratungsinstrument geeignet nicht aber als (Online)-Prozess-Controlling-Instrument.
- Allerdings gibt es zunehmend Prozesskontrollsysteme, die auch Energiedaten zur Verfügung stellen.
- Berater sind in diesem Feld nicht wegzudenken.
- Das FOUNDRYBENCH-Projekt hilft, Selbständigkeit zu entwickeln bis zu einem Punkt, wo Fachspezialisten unumgänglich und angemessen sind.

Auslastungsabhängige Energieeffizienz

Elektrizitätsnutzung in kWh pro fertiggestellten Gußteil


Blick auf (unsichtbare) Potentiale

Epilog

- ENERGIE hat immer eine dienende Funktion im Produktionsgeschehen.
- Es macht daher keinen Sinn, den Energieverbrauch mit erster Priorität zu optimieren, also alles auf geringsten Energieverbrauch auszurichten.
- Vielmehr muss es darum gehen, ein Optimum im Rahmen des nachhaltigen Wirtschaftens zu finden.